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Abstract-The work studies mass transfer in a two-dimensional submerged wall jet flow with a chemical 
reaction of the first order at the surface. The approach suggested previously by Apelblat [l] for the analysis 
of a mass transfer with a first-order chemical reaction at the interface in a boundary layer flow is generalized 
for the case of a submerged two-dimensional wall jet Bow. The solution of the problem is obtained in a 

closed analytical form. Copyright cl 1996 Elsevier Science Ltd. 

INTRODUCTION 

Mass transfer with a heterogeneous chemical reaction 
of the first order arises in a heterogeneous catalysis, 
chemical absorption and chemical engineering. For 
comparison between theory and experimental data, 
simple and exact solutions of the problem are desir- 
able. At the same time, exact analytical solutions were 
derived only for very simple geometry and flow con- 
figurations. 

An analytical solution of a mass transfer problem 
coupled with an irreversible chemical reaction of the 
first order at a surface for a flow with constant velocity 
(plug flow) is obtained in refs. [l, 21. Apelblat [l] 
derived exact analytical solutions of a mass transfer 
problem with a heterogeneous chemical reaction of 
the first-order in a flow with a constant velocity gradi- 
ent at the interface (Couette flow) and in a flow with 
a moving interface (generalized Couette flow). In his 
further study [3] Apelblat analyzed the effect of molec- 
ular diffusion in the direction of convective transport. 
Diffusion with interfacial chemical reaction in a lami- 
nar channel flow is investigated by Cowherd and Hael- 
scher [4]. Ghez [5] considered mass transport in a 
multicomponent system with a surface chemical reac- 
tion of the first order. In refs. [l, 2, 61 mass transfer 
with a first-order chemical reaction at the surface 
between a flat plate and a parallel fluid flow is studied 
analytically by three different methods. The boundary 
layer problem is the most complicated one from the 
mathematical point of view. Formulation of a con- 
vective heat transfer problem with mixed boundary 
conditions has the same mathematical form as a con- 
vective mass transfer problem with a heterogeneous 
first-order chemical reaction. The mixed boundary 
conditions in the problems of mass or heat transfer 
also arise when mass or heat transfer through an inter- 

face is inhibited by the presence of surfactants [6]. 
Complex mass transfer between a plane jet and a wall 
arises in heterogeneous catalysis, in chemical engin- 
eering operations, in etching. etc. 

The wall jet forms at the trailing edge of a gas slug 
in gas-liquid slug flow [7] when a semi-infinite jet 
emerges from the thin circular slot between a gas slug 
and a tube wall and spreads in a liquid plug along the 
tube wall. The solution of a mass or heat transfer 
problem between a jet and a wall can be used for the 
analysis of mass or heat transfer between gas-liquid 
slug flow and a wall with mixed boundary conditions. 
The solution of a heat transfer problem between a wall 
and gas-liquid slug flow with Dirichlet and Neumann 
boundary conditions was derived in ref. [8]. 

FORMULATION OF THE PROBLEM 

Consider mass transfer between a solid surface and 
an adjacent laminar wall jet flow, whereby a jet 
emerges from a thin slot and spreads along the surface 
(see Fig. 1). The soluble substance with concentration 
c(_u, I) flows with a fluid and is dispersed under the 
combined effects of diffusion and chemical reaction. 
In diffusion kinetics, mass flux is usually directed from 
a liquid with initial concentration c0 to a solid surface. 
The hydrodynamics of a wall jet flow was studied in 
refs. [9, lo] where the following formulas for stream- 
line function, velocity components and wall shear 
stress were derived : 

a+ a* 
ll==& “=-z 
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NOMENCLATURE 

B(z,~v) beta function 
c=c./c,-I 
c(x.,r) molar concentration at point x. J 
(‘II concentration in the bulk of liquid 
D diffusion coefficient 
J,,(z) Bessel function of the first kind of 

order v 

x” 
flux at the interface 
rate constant of surface chemical 
reaction 

U(a, h. z) Kummer function 
.x coordinate in the direction parallel to 

the interface 
.\f dimensionless coordinate 

J’ coordinate in the direction normal to 
the interface 

u velocity component in x-direction 
2’ velocity component in _r-direction 
X transformed variable of x 
? transformed variable of J’ 

F(q) function, equation (4) 

e flow rate of liquid 
J total jet momentum 
E constant, equation (6) 
Re Reynolds number 
Da Damkohler number 
SC = ,1/D Shmidt number 
IV,,&) Whittaker function. 

Greek symbols 
c(. /I, ;‘. i constants 
I-(z) gamma function 

II similarity variable 
1’ kinematic viscosity, constant 

P dynamic viscosity, constant 

: 

fluid density, constant 
variable 

II/ stream function 
T wall shear stress. 

t”p (3) 

The unknown function F(q) in formula (1) is deter- 
mined from the solution of an ordinary differential 
equation 

4F”‘fFF”+2F” = 0 (4) 

where the prime denotes derivative with respect to ‘1. 
The invariant E in equations (1) and (3) is determined 
by the following formulas : 

1 
E= $u’ dr, = const. (5) 

or 

&s!L 
2O.p’ 

(6) 

where 

In equation (7), Q is a fluid flow rate and J is the 
momentum flux density. 

At a steady state, neglecting diffusion in the direc- 
tion of convective transport, the mass transfer is gov- 
erned by the equation of convective diffusion 

iic dc PC 
“;?y +“& = Di7,2 

with initial and boundary conditions 

(’ = co forx=O and _r>O 

c = cc, for x > 0 and ?I+ xl 

D$=kc forx>O and ,v=O. 1 3 

Fig. I. Scheme of a wall jet flow. 

(8) 

(9) 

10) 

11) 
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SOLUTION OF THE PROBLEM 

The above boundary value problem (8)-(1 l), with 
mixed boundary conditions, is solved in the approxi- 
mation of a thin concentration boundary layer. In 
a case of large Schmidt numbers SC = v/D >> 1, the 
thickness of the concentration boundary layer is con- 
siderably less than that of the viscous boundary layer. 
Then it is reasonable to assume that the dependence 
of the longitudinal velocity component upon y is 
linear, i.e. 

(12) 

where ‘t is determined by equation (3). The transversal 
velocity component is found from the equation of 
continuity 

aU+aV&J. 
ax ay 

Introduce a new variable 

*= ) s udy’ = 
0.221E3’4X-5’4y2 

0 2v5’4 

Then equation (8) can be reduced to 

ac ac ac 
-=DG uG’ ax ( > 

Taking into account that 

(&221)U2~3/8X-5’8 .21/Z 
---c 

V5/8 

equation (15) yields 

ac 
-x5’* = wq~~) ax 

where 

D(0.221)“‘E3” .2’j2 
tl= “518 

Introduce the new variables 

x = @, .” _.w 
3 Y = 2=/3&. 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Equation (17) in these new variables can be rewrit- 
ten as 

The boundary conditions (9)-( 11) in the new vari- 
ables read 

c = cg forX= 0 and Y = 0 (21) 

c = cg forX>O and Y-co (22) 
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(23) 

where 

P= 
k.2”335’3 35/3kV5’3E-’ 

c18/3 .25 = 26D8’3(0.221)4’3 
(24) 

Using the new variable C(X, Y) = c(X, u) - c0 the 
above boundary value problem can be formulated as 
follows : 

yac a2c 
ax ay2 

(25) 

C=O atX=O and Y=O (26) 

C=O atX>O and Y-+cc (27) 

;= flX5’3C+~X5i3c0 for Y = 0. (28) 

Applying the Laplace transform to equation (25), 
using the boundary conditions (26) and (27), and 
using the technique developed in ref. [ 11, we obtain 

C(X, Y) = xG(t) ___ 5 s m y1/2u1/6 

0 II 2&c 

x exp [ - u(X- t)]J,,, (4) du dt (29) 

where 4 = 2u “2 - Y3’2/3, J,,,(4)-Bessel function. The 
unknown function G(X) is determined from the 
remaining boundary condition (28). Using equations 
(28) and (29) and taking into account that (see. e.g. 

Dl) 

(30) 

the following integral Abel equation for evaluating 
G(X) is derived : 

s x G(t) = yx5’3 
0 (X- t)4’3 

(31) 

where 

y = 35’6 - 27$. (32) 

The solution of this Abel equation reads (for details 
see ref. [l 11) 

G(X) = -z s x 

2nJ5 0 
t’13(X- t)2’3 dt. (33) 

Introduce the new variable 5 = t/X. Then the inte- 
gral in equation (33) can be expressed through the 
beta function (see, e.g. [12]) 

5yx2 ’ 
G(X)= -___ s 2nd 0 

(‘/‘(I -Q”‘d< = 

(34) 
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Using the known relation between the beta function The distribution of concentration can also be writ- 
and the gamma function ( for details see [ I2]), we find ten in terms of the confluent hypergeometric Kummer 

r;,r($r($ , 
function. Taking into account the relation between 

G(J) = - --____ ,I.-. the Whittaker and Kummer functions (see, e.g. ref. 
2n3T 2 

(35) 
(121) 

Equations (29) and (35) yield the following formula 
for concentration distribution : 

(41) 

the distribution of concentrations can be written as 
follows : 

where 

2 = 
59r(l!3)r(2;3) 5/X( I !3)r(2,3)V i 

= 128rr,l3(0.221)~ ‘ED” I‘ 
(42) 

10&r’ 
Using the relation 

(37) 

The result can be reduced to Whittaker function 
using the following formulas (see. e.g. refs. [ 12. 131) : 

Thus, we arrived at the analytical expression for the 
distribution of concentration in the wall jet flow with 
the first-order surface chemical reaction 

0.71 

0.6 i 

0.5$ 

U(a. h,O) = __!- 
smnh i 

~ __‘L ~ 
r(i +LI--hjr(h) J . (43) 

we obtain the explicit formula for the mass flux at the 
Wall 

Using the dimensionless variables 

formula (44) can be written as 

Y Du .T” ’ 
-.- = I - I .939- __ 

kc,, Re’ 4 SC.’ 3 (45) 

Dependence of the normalized mass flux q/kc,,, upon 
dimensionless coordinate .f as given by equation (45) 

0.44 

0.3 i 
0.2; 2 :-!!L__L. 4 6 8 : -70 

Fig. 2. Dependence of a normalized mass flux y;hc,,, upon dimensionless coordinate .f. RC = 10. (1) 
fIc/ = 0.5: (7) Do = 1.0; (3) Du = 2.0. 
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q/kc, 

Fig. 3. Dependence of normalized mass flux q/kc,, upon dimensionless coordinate 2’. Re = 0. I. (1) Da = 0.5 ; 
(2) Da = 1.0; (3) Da = 2.0. 

is shown in Figs. 2 and 3 for SC = 500, Re = 0.1 and 

10 and Da = 0.5 ; 1.0 and 2.0. 
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