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Abstract—The work studies mass transfer in a two-dimensional submerged wall jet flow with a chemical

reaction of the first order at the surface. The approach suggested previously by Apelblat [1] for the analysis

of a mass transfer with a first-order chemical reaction at the interface in a boundary layer flow is generalized

for the case of a submerged two-dimensional wall jet flow. The solution of the problem is obtained in a
closed analytical form. Copyright © 1996 Elsevier Science Ltd.

INTRODUCTION

Mass transfer with a heterogeneous chemical reaction
of the first order arises in a heterogeneous catalysis,
chemical absorption and chemical engineering. For
comparison between theory and experimental data,
simple and exact solutions of the problem are desir-
able. At the same time, exact analytical solutions were
derived only for very simple geometry and flow con-
figurations.

An analytical solution of a mass transfer problem
coupled with an irreversible chemical reaction of the
first order at a surface for a flow with constant velocity
(plug flow) is obtained in refs. [1, 2]. Apelblat [1]
derived exact analytical solutions of a mass transfer
problem with a heterogeneous chemical reaction of
the first-order in a flow with a constant velocity gradi-
ent at the interface (Couette flow) and in a flow with
a moving interface (generalized Couette flow). In his
further study [3] Apelblat analyzed the effect of molec-
ular diffusion in the direction of convective transport.
Diffusion with interfacial chemical reaction in a lami-
nar channel flow is investigated by Cowherd and Hael-
scher [4]. Ghez [5] considered mass transport in a
multicomponent system with a surface chemical reac-
tion of the first order. In refs. [1, 2, 6] mass transfer
with a first-order chemical reaction at the surface
between a flat plate and a parallel fluid flow is studied
analytically by three different methods. The boundary
layer problem is the most complicated one from the
mathematical point of view. Formulation of a con-
vective heat transfer problem with mixed boundary
conditions has the same mathematical form as a con-
vective mass transfer problem with a heterogeneous
first-order chemical reaction. The mixed boundary
conditions in the problems of mass or heat transfer
also arise when mass or heat transfer through an inter-

face is inhibited by the presence of surfactants [6].
Complex mass transfer between a plane jet and a wall
arises in heterogeneous catalysis, in chemical engin-
eering operations, in etching, etc.

The wall jet forms at the trailing edge of a gas slug
in gas-liquid slug flow [7] when a semi-infinite jet
emerges from the thin circular slot between a gas slug
and a tube wall and spreads in a liquid plug along the
tube wall. The solution of a mass or heat transfer
problem between a jet and a wall can be used for the
analysis of mass or heat transfer between gas—liquid
slug flow and a wall with mixed boundary conditions.
The solution of a heat transfer problem between a wall
and gas-liquid slug flow with Dirichlet and Neumann
boundary conditions was derived in ref. [8].

FORMULATION OF THE PROBLEM

Consider mass transfer between a solid surface and
an adjacent laminar wall jet flow, whereby a jet
emerges from a thin slot and spreads along the surface
(see Fig. 1). The soluble substance with concentration
¢(x,y) flows with a fluid and is dispersed under the
combined effects of diffusion and chemical reaction.
In diffusion kinetics, mass flux is usually directed from
a liquid with initial concentration ¢, to a solid surface.
The hydrodynamics of a wall jet flow was studied in
refs. [9, 10] where the following formulas for stream-
line function, velocity components and wall shear
stress were derived :
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the interface
dimensionless coordinate

<

¥ coordinate in the direction normal to
the interface

u velocity component in x-direction

v velocity component in y-direction

X transformed variable of x

Y transformed variable of v

NOMENCLATURE

B(z,w) beta function F(y) function, equation (4)
C=cley—1 Q flow rate of liquid
¢(x,y) molar concentration at point x, y J total jet momentum
Cy concentration in the bulk of liquid E constant, equation (6)
D diffusion coefficient Re Reynolds number
J.(z) Bessel function of the first kind of Da  Damkohler number

order v S¢ =v/D  Shmidt number
q flux at the interface W,,.(z) Whittaker function.
k rate constant of surface chemical

reaction
U(a.b.z) Kummer function Greek symbols
X coordinate in the direction parallel to a. B, 7, A constants

I'(z) gamma function

similarity variable

kinematic viscosity, constant
dynamic viscosity, constant
fluid density, constant
variable

stream function

wall shear stress.
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The unknown function F(x) in formula (1) is deter-
mined from the solution of an ordinary differential
equation

AF"+FF"4+2F* =0 4)

where the prime denotes derivative with respect to 4.
The invariant E in equations (1) and (3) is determined
by the following formulas:

E= J Wyu? dy = const. (5)
0
or
90J
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In equation (7), Q is a fluid flow rate and J is the
momentum flux density.

At a steady state, neglecting diffusion in the direc-
tion of convective transport, the mass transfer is gov-
erned by the equation of convective diffusion
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with initial and boundary conditions

c=¢, forx=0 and y>0 9)
c=c¢, forx>0 and y- (10)
3¢
8—V=kc forx>0 and y=0. (an
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=

Fig. 1. Scheme of a wall jet flow.
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SOLUTION OF THE PROBLEM

The above boundary value problem (8)—(il), with
mixed boundary conditions, is solved in the approxi-
mation of a thin concentration boundary layer. In
a case of large Schmidt numbers Sc = v/D » 1, the
thickness of the concentration boundary layer is con-
siderably less than that of the viscous boundary layer.
Then it is reasonable to assume that the dependence
of the longitudinal velocity component upon y is
linear, i.e.

u=—y (12)

u
where 7 is determined by equation (3). The transversal
velocity component is found from the equation of
continuity

ou v
—+ = 13
p 5 0. (13)
Introduce a new variable
Y 0.221EM x4y
l//=Ludy =T e (14)
Then equation (8) can be reduced to
dc dcf Oc
a-—D;ﬂ;(lla—&). (15)
Taking into account that
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equation (15) yields
dc a de
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where
D(0.221)'2E¥® . 2172
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v
Introduce the new variables
X=alx® y=20y (19)

Equation (17) in these new variables can be rewrit-
ten as

E_azc
0X  ay?’

(20)
The boundary conditions (9)—(11) in the new vari-

ables read

forX=0 and Y=0 21)

(22)

C=Cy

forX>0 and Y-

c=c
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dc 53,
oy =BX (23)
where
k213353 33y -1
ﬁ = 8/3 5 = 6 n8/3 4/3 " (24)
oc .2 2°D®*>(0.221)

Using the new variable C(X, Y) = ¢(X, Y) —¢, the
above boundary value problem can be formulated as
follows:

oc  &*C
X~ oy? (25)
C=0 atX=0 and Y=0 (26)
C=0 atX>0 and Y- (27)
oc
= BX*PC+BX*3¢cy, forY=0. (28)
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Applying the Laplace transform to equation (25),
using the boundary conditions (26) and (27), and
using the technique developed in ref. [1], we obtain

oc Y1/2 1/6

" on
u(X—01J3(¢) dudz

where ¢ = 2u'?- Y*?/3, J, ;(¢)—Bessel function. The
unknown function G(X) is determined from the
remaining boundary condition (28). Using equations
(28) and (29) and taking into account that (see, e.g.

)

CX,Y) = J G(1) j

X exp[— 29)
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(30)

the following integral Abel equation for evaluating
G(X) is derived :

¥ G
L i G1)
where
y = 3%%-2np. (32)

The solution of this Abel equation reads ( for details
see ref. [11])

{3 (X — 1) dt.

G = - (33)

n\/_ .[
Introduce the new variable £ = ¢/X. Then the inte-

gral in equation (33) can be expressed through the
beta function (see, e.g. [12])
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BG,3). (34)
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Using the known relation between the beta function
and the gamma function ( for details see [12]), we find
) STEHIE |

G(X) = — — Yx

2352

(35)

Equations (29) and (35) yield the following formula
for concentration distribution :
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The result can be reduced to Whittaker function
using the following formulas (see, e.g. refs. [12, 13]):

f e "' ) (@) du = - X'Lexp<~ L) (38)
0 a 3y ox)
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Thus, we arrived at the analytical expression for the
distribution of concentration in the wall jet flow with
the first-order surface chemical reaction

(X, Y)_] 6AX 7 / ); 0w ‘7)7'7‘
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(40)
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The distribution of concentration can also be writ-
ten in terms of the confluent hypergeometric Kummer
function. Taking into account the relation between
the Whittaker and Kummer functions (see, e.g. ref.

[12h
W, .(z) = e':’::"“"’U(%-i—m—/, I+ 2m, o),
(41)

the distribution of concentrations can be written as
follows :
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Using the relation
Va0 =" (— b\ 4
OPN = Gin 1"(I+a—b)1‘(b))' (

we obtain the explicit formula for the mass flux at the

wall
L7AD &
g =kely = /\'t‘n(l - ?(ﬁ) (44)
Using the dimensionless variables
kv’ J
Re == Da-_—B"j o .\721\3;,
tormula (44) can be written as
q Du #°*
— =1 —1.939— ———. 45
ke, Re'* S¢'? @

Dependence of the normalized mass flux ¢/k¢, upon
dimensionless coordinate ¥ as given by equation (45)

6 8 10

;(3/4

Fig. 2. Dependence of a normalized mass flux ¢/kc¢, upon dimensionless coordinate x. Re = 10. (1)
Da=05:(2)Da=1.0;(3) Da=20.
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Fig. 3. Dependence of normalized mass flux ¢/kc, upon dimensionless coordinate . Re = 0.1. (1) Da = 0.5;
(2) Da=1.0; (3) Da =2.0.

is shown in Figs. 2 and 3 for Sc = 500, Re = 0.1 and
10 and Da = 0.5; 1.0 and 2.0.
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